ASSESSING THE FEASIBILITY OF TWIN SCREW EXTRUSION PROCESSING IN THE DEVELOPMENT OF PHARMACEUTICAL PRODUCTS

Ficiarà E., Conte A., Ceccolini M., Donati L., Antonelli L., Boltri L.

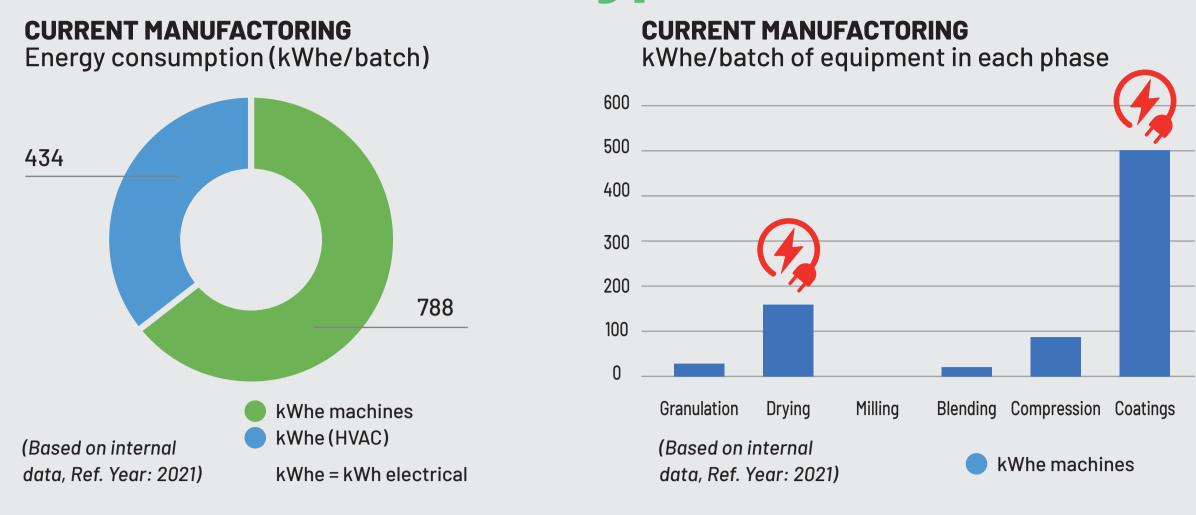
Global R&D PLCM – Angelini Pharma S.p.A. – Via Vecchia del Pinocchio 22, Ancona – Italy elisa.ficiara@angelinipharma.com

INNOVATING FOR THE FUTURE GREENAPI

INTRODUCTION AND OBJECTIVE

Within the framework of the Horizon Europe project ETERNAL, Twin Screw Extrusion is being investigated as a key enabling technology for a greener pharmaceuticals production. This is due to its unit operation, small footprint, flexibility, solvent-free Continuous Manufacturing (CM) nature and suitability for real-time monitoring [1].

The case study consists in the feasibility assessment of producing a medicinal product using Twin Screw Granulation (TSG) to produce a granulate for an immediate-release tablet.

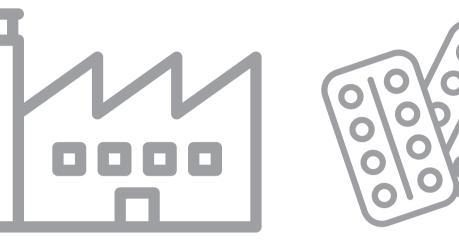


The aim is to evaluate the reduction of the environmental impact in terms of energy efficiency and resource use, by comparing it with the current batch manufacturing process.

Traditional manufacturing

Angelini Pharma

BASELINE Manufacturing process

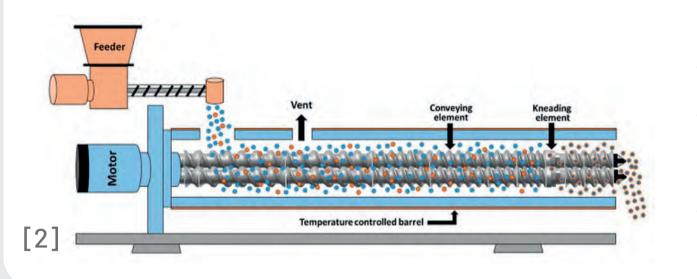


RESULTS

TARGET Manufacturing process

MANUFACTURING **STEPS:** • Mixing

V Removal of high energy consumption steps. X DRYING **X** COATING STEPS


• Batch process.

• Numerous phases

and equipment.

• Multiple production rooms.

New investigated process

Literature

• Twin Screw Extruder.

 Suitable for Continuous Manufacturing.

• Smaller equipment train.

METHODOLOGY

Selection of excipients in relation to technology research and product characteristics **Preformulation** studies Current Energy consumption estimation and measurement manufacturing of the current manufacturing: energy and water electrical and thermal kWh/batch **Baseline** for equipment • kWh/batch for HVAC for rooms Water consumption

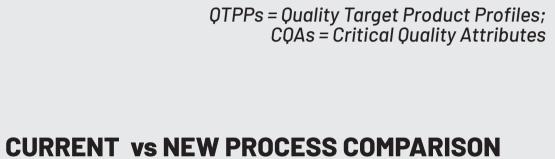
- Twin Screw Melt **Granulation (TSMG)**
- Milling
- Blending Tableting

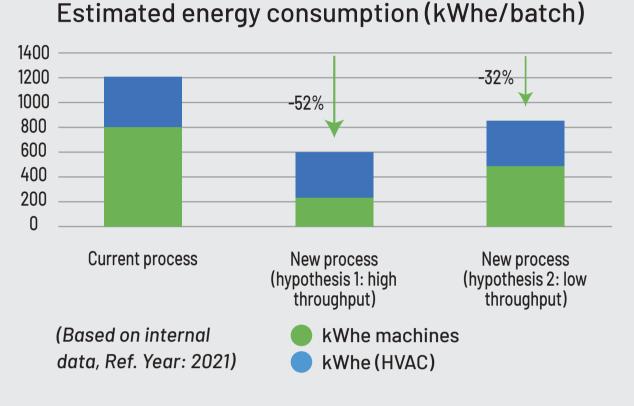
X

No added water

X SOLUTIONS PREPARATION

No process steps involving thermal energy by natural gas


Prototype definition


- Definition of QTPPs and identification of CQAs.
- Stable up to 12M, need of a storage limitation temperature (25°C).
- Tablet weight decreased (-18%).

BASELINE vs TARGET energy consumption


The reduction in electrical energy consumption has been preliminarily estimated between 32% and 52%, depending on the throughput.

DoE on TSG process

- Identification of key factors affecting the product quality and process performance.
 - Scr. B-Ċ (2 kneading zones) reduce coarse particles.
 - Scr. A (1 kneading zone) decreases torque and leads to better flowability.
 - High throughputs increase lumps and decrease fines.

 Formulation trials Stress test 	 Best prototype selection by: evaluating the composition using a D-Optimal DOE design with 9 experimental trials defining process steps and parameters 	 Evaluation of Specific Mechanical Energy [kW/(kg/h)] an residence time in relation to granules quality, useful for scale-u phase. Prediction of the best trial: 1.2 kg/h, Screw speed 410 rpm, 65°C Conf. C.
	Thermal, hydrolytic and photolytic stress tests	CONCLUSIONS
Stability study	Preliminary 12M-stability study: • timepoints 3-6-9-12 months	A suitable prototype has been developed at R&D scale by using a CN technology, i.e. Twin Screw Granulation, followed by tableting. The new process might be carried out continuously New tablets show appropriate quality attributes The energy consumption is decreased by reducing the steps and due
Preliminary evaluation	 Innepoints 3-0-9-12 months Iong-term, intermediate, accelerate conditions 2 packaging types (blisters, glass bottles) Microbiological-chemical-physical analyses to assess stability 	 to the small equipment footprint, which allows for smaller rooms The use of resources, such as raw materials and water, are optimized since the new tablet has a lower weight and less/smalle machines need to be cleaned. As next step, the TSG process will be optimized and scaled-up using a pilot 18mm-extruder by an ETERNAL consortium partner and the
pro 40	Estimation of energy consumption of the new process hypothesizing the use of a production scale 40mm-extruder at two throughputs (kg/h) and considering smaller spaces to be air-conditioned.	related energy consumption will be measured
DoE on TSG		REFERENCES/BIBLIOGRAPHY
process useful for scale-up	 Full factorial mixed design including 24 experiments 4 Factors: throughput 0.6-1.2kg/h (Thr) screw speed 150-500 rpm (Sti) temperature 55-65°C (Temp) screw configuration A-B-C (Scr) 	 [1] Srushti Tambe, Divya Jain, Yashvi Agarwal, Purnima Amin, Hot-melt extrusion: Highlighting recent advances in pharmaceutical applications, Journal of Drug Delivery Science and Technology, Volume 63, 2021, 102452, ISSN 1773-2247, https://doi.org/10.1016/j.jddst.2021.102452 [2] Nandi U, Trivedi V, Ross SA, Douroumis D. Advances in Twin-Screw Granulation Processing. Pharmaceutics. 2021; 13(5):624. https://doi.org/10.3390/pharmaceutics13050624

